
1

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name
Algorithms and data structures 2 [S1Teleinf1>AiSD2]

Course
Field of study
Teleinformatics

Year/Semester
2/3

Area of study (specialization)
–

Profile of study
general academic

Level of study
first-cycle

Course offered in
Polish

Form of study
full-time

Requirements
compulsory

Number of hours
Lecture
30

Laboratory classes
30

Other
0

Tutorials
0

Projects/seminars
0

Number of credit points
5,00

Coordinators
dr inż. Filip Idzikowski
filip.idzikowski@put.poznan.pl
prof. dr hab. inż. Jerzy Tyszer
jerzy.tyszer@put.poznan.pl

Lecturers

Prerequisites
The student should have basic knowledge of discrete mathematics, combinatorics and probability theory. 
Should be able to perform calculations using a mathematical apparatus in the field of mathematical 
analysis and probability, and to obtain information from the indicated sources

Course objective
The course aims at introducing students to the area of algorithms and data structures. Furthermore, it 
presents methodologies and techniques of the object oriented programming using C++, providing a fairly 
complete introduction to the language.

Course-related learning outcomes
Students know basic principles and rules used to design effective object oriented programs and data 
structures. They also know details regarding various algorithms used to handle numerical and discrete 
math problems. They also learn how to design data structures with the help of templates and 



2

standard libraries. 
Skills 
A student can design an algorithm using, as guiding criteria, its time and memory complexity. He/she 
is also capable of coding proposed algorithms by deploying languages such as C++. A student 
understands the concept of object-oriented programming and impact of various data structures on 
time and memory efficiency of software applications. 
Social competences 
A student appreciates the practical significance of the object-oriented programming paradigm. Is 
aware of limitations of various algorithms. Is open for new applications of software engineering in 
technology, science, and social (daily) life. Can express his/her own opinions with respect to currently 
used solutions and methods as far as design of contemporary software systems is concerned.

Methods for verifying learning outcomes and assessment criteria
Learning outcomes presented above are verified as follows:
2h-long written exam comprising assignments that cover the content of lectures. Laboratory classes are 
evaluated based on several written tests and a few small projects.

Programme content
Object oriented programming. C++ classes. Constructors and destructors. Friend functions. Operator 
overloading. Inheritance. Hierarchy of classes. Templates. Pointers. Dynamic creation of objects. 
Polymorphism. Virtual functions. Copy constructor. Containers. A linked list. Iterators. Ordered lists, 
bidirectional lists, cyclic lists, queues. Reverse Polish Notation. Binary trees. Binary search trees. AVL 
trees. Insertion to and deletion from AVL trees. Graphs. Depth-first search, Euler cycles, finding Euler 
paths. Hamiltonian cycle. Travelling salesman problem, simulated annealing. Breadth- first search. 
Spanning trees. Dijkstra's algorithm.

Course topics
Lecture: Object oriented programming. C++ classes. Constructors and destructors. Complex numbers - 
implementation. Constructor as a converter. Friend functions. Operator overloading. Inheritance. Hierarchy 
of classes. Templates. Pointers, operators new and delete. Dynamic creation of objects. Pointers to 
complex objects. Polymorphism. Virtual functions. Abstract classes. Copy constructor. Containers. A linked 
list, basic operations on lists. Iterators and their applications. Ordered lists, bidirectional lists, cyclic lists, 
queues. Reverse Polish Notation. Binary trees, basic operations, traversal methods. Binary search trees – 
insertion and deletion. AVL trees – local balancing, rotations of nodes. Insertion to and deletion from AVL 
trees. Graphs. Depth-first search, Euler cycles, Euler graphs, finding Euler paths. Hamiltonian cycle. 
Travelling salesman problem, simulated annealing. Breadth- first search. Spanning trees. Prim's, Kruskal's, 
and Boruvka's algorithms. Dijkstra's algorithm, the Euclidean metric.

Labs: forming simple classes. Creation of objects. Constructors and destructors. Operator overloading. 
Friend functions. Inheritance and class templates. Polymorphism and virtual functions. Containers – simple 
examples. Containers for vectors. Forming linked lists. Binary trees and traversal methods: in- order, pre-
order and post-order. Working with binary search trees – insertion and deletion. AVL trees. Building graphs. 
Prim's and Kruskal's algorithms. Dijkstra's algorithm.

Teaching methods
Lectures: a multimedia presentation. Laboratory classes: students solve various problems provided by a 
teacher, write programs, compile them, debug a code, and evaluate programs on benchmark tests.

Bibliography
1. R. Sedgewick, Algorytmy w C++, Oficyna Wydawnicza READ ME, Łódź, 1999
2. N. Wirth, Algorytmy + struktury danych = programy, WNT, Warszawa, 1980.
3. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Wprowadzenie do algorytmów, WNT, Warszawa, 
2004
4. E.W. Dijkstra, Umiejętność programowania, WNT, Warszawa, 1985.
5. J. Grębosz, Symfonia C++, Oficyna Kallimach, Kraków 2008.
6. W. Lipski, Kombinatoryka dla programistów, WNT, Warszawa, 1982.



3

Breakdown of average student's workload

Hours ECTS

Total workload 120 5,00

Classes requiring direct contact with the teacher 64 3,00

Student's own work (literature studies, preparation for laboratory classes/
tutorials, preparation for tests/exam, project preparation)

56 2,00


